

# **Roll No:**

### **B.TECH** (SEM- V) THEORY EXAMINATION 2021-22 HEAT AND MASS TRANSFER

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

### **SECTION A**

 $2 \times 10 = 20$ 

| 1.    | Attempt <i>all</i> questions in brief.                                      | $2 \ge 10 = 20$ |    |
|-------|-----------------------------------------------------------------------------|-----------------|----|
| Q no. | Question                                                                    | Marks           | СО |
| a.    | What is the difference between thermodynamics and heat transfer?            | 2               | 1  |
| b.    | How the thermal conductivity of material is defined? What are its units?    | 2               | 1  |
| c.    | What is meant by transient heat conduction?                                 | 2               | 2  |
| d.    | Explain effectiveness and efficiency of fin.                                | 2               | 2  |
| e.    | What is turbulent flow? Define it.                                          | 2               | 3  |
| f.    | Define Reynolds's number, also write the significance of Reynolds's number. | 2               | 3  |
| g.    | Define Stefan Boltzmann's law.                                              | 2               | 4  |
| h.    | Explain black body, opaque body, white body and grey body also.             | 2               | 4  |
| i.    | How heat exchangers are classified?                                         | 2               | 5  |
| j.    | What are the various modes of mass transfer?                                | 2               | 5  |

### **SECTION B**

#### 2. Attempt any *three* of the following:

| Q no. | Question                                                                 | Marks | CO |
|-------|--------------------------------------------------------------------------|-------|----|
| a.    | Drive an expression for heat conduction through a composite wall.        | 10    | 1  |
| b.    | It is required to heat oil to about 300°C for frying purpose. A ladle is | 10    | 2  |
|       | used in the frying. The section of the handle is 5 mm x 18 mm. the       |       |    |
|       | surroundings are at 30°C. The conductivity of the material is 205        |       |    |
|       | W/m°C. If the temperature at a distance of 380 mm from the oil should    |       |    |
|       | not reach 40°C, Determine the convective heat transfer coefficient.      |       |    |
| c.    | Differentiate between:-                                                  | 10    | 3  |
|       | (i) Natural and forced convection.                                       |       |    |
|       | (ii) Hydrodynamic and thermal boundary layer thickness.                  |       |    |
| d.    | A 70 mm long circular surface of a circular hole of 35 mm diameter       | 10    | 4  |
|       | maintained at uniform temperature of 250°C. Find the loss of energy to   |       |    |
|       | the surroundings at 27°C, assuming the two ends of the hole to be as     |       |    |
|       | parallel discs and the metallic surfaces and surroundings have a black   |       |    |
|       | body characteristics.                                                    |       |    |
| e.    | Derive an expression for effectiveness by NTU method for parallel flow.  | 10    | 5  |

### **SECTION C**

#### 3. Attempt any *one* part of the following:

| Q no. | Question                                                                                           | Marks | СО |
|-------|----------------------------------------------------------------------------------------------------|-------|----|
| a.    | Derive a general heat conduction equation for Cartesian co-ordinate. And                           | 10    | 1  |
|       | also draw the temperature-thickness profile for it.                                                |       |    |
| b.    | A mild steel tank of thickness 12 mm contains water at 95°C. The                                   | 10    | 1  |
|       | thermal conductivity of mild steel is 50 W/m°C, and the heat transfer                              |       |    |
|       | coefficients for the inside and outside the tank are 2850 and 10 W/m <sup><math>2</math> °C,</sup> |       |    |
|       | respectively. If the atmospheric temperature is 15 °C, calculate:                                  |       |    |
|       | (i) The rate of heat loss per square meter of the tank surface area.                               |       |    |
|       | (ii) The temperature of the outside surface of the tank.                                           |       |    |



**Roll No:** 

## 4. Attempt any *one* part of the following:

| т.    | Attempt any one part of the following.                                                                                   | -     |    |
|-------|--------------------------------------------------------------------------------------------------------------------------|-------|----|
| Q no. | Question                                                                                                                 | Marks | CO |
| a.    | An aluminium alloy plate of 400 mm x 400 mm x 4mm size at 200 °C is                                                      | 10    | 2  |
|       | suddenly quenched into liquid oxygen at -183°C. Starting from                                                            |       |    |
|       | fundamentals or deriving the necessary expression to determine the time                                                  |       |    |
|       | required for the plate to reach a temperature of $-70$ °C. Assume h =                                                    |       |    |
|       | 20000 KJ/m <sup>2</sup> h °C, $c_p = 0.8$ KJ/Kg °C and density = 3000 Kg/m <sup>3</sup> .                                |       |    |
| b.    | Prove that for a body whose thermal resistance is zero, the temperature                                                  | 10    | 2  |
|       | required for cooling or heating can be obtained from the relation                                                        |       |    |
|       | $(t-t_a)/(t_i-t_a) = \exp[-B_i F_a]$                                                                                     |       |    |
|       | Where the symbols have their usual meanings.                                                                             |       |    |
| 5.    | Attempt any one part of the following:                                                                                   |       |    |
| Q no. | Question                                                                                                                 | Marks | CO |
| a.    | A nuclear reactor with its core constructed of parallel vertical plates of                                               | 10    | 3  |
|       | 2.2 m high and 1.4 m wide has been designed on free convection heating                                                   |       |    |
|       | of liquid bismuth. The maximum temperature of the plate surface is                                                       |       |    |
|       | limited to 960°C while the lowest allowable temperature of the bismuth                                                   |       |    |
|       | is 340°C. Calculate the maximum possible heat dissipation from the both                                                  |       |    |
|       | sides of each plate. For the convection coefficient for the plate is                                                     |       |    |
|       | $Nu = 0.13 (Gr.Pr)^{0.333}$                                                                                              |       |    |
|       | Where different parameter are evaluated at the mean film temperature.                                                    |       |    |
| b.    | Air at 20°C flowing over a flat plate which is 200 mm wide and 500                                                       | 10    | 3  |
|       | mm long. The plate is maintained at 100°C. Find the heat loss per                                                        |       |    |
|       | hour from the plate f the air is flowing parallel to 500 mm side with 2                                                  |       |    |
|       | m/s velocity. What will be the effect on heat transfer if the flow is                                                    |       |    |
|       | parallel to 200 mm? The properties of air at $(100+20)/2 = 60^{\circ}$ C are v                                           |       |    |
|       | $= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, \text{ k} = 0.025 \text{ W/m}^\circ\text{C} \text{ and } \text{Pr} = 0.7.$ |       |    |
| 6.    | Attempt any one part of the following:                                                                                   |       |    |
| Q no. | Question                                                                                                                 | Marks | CO |
| a.    | Determine the radiant heat exchanger in W/m <sup>2</sup> between two large                                               | 10    | 4  |
|       | parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of                                                 |       |    |
|       | 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is                                                |       |    |
|       | introduced as a radiation shield between the two plates. Use $\sigma$ =                                                  |       |    |
|       | $5.67*10^{-8} \text{ W/m}^2\text{k}^4$                                                                                   |       |    |
| b.    | Derive the expression for net heat exchange between black bodies for                                                     | 10    | 4  |
|       | infinite parallel planes.                                                                                                |       |    |
| 7.    | Attempt any one part of the following:                                                                                   |       |    |
| Q no. | Question                                                                                                                 | Marks | CO |
| a.    | The flow rates of hot and cold water streams running through a parallel                                                  | 10    | 5  |
|       | flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a                                                  |       |    |
|       | temperatures 75°c and 20°c respectively. The exit temperature of hot                                                     |       |    |
|       | water is 45°c. If the individual heat transfer coefficient on both sides are                                             |       |    |
|       | 650 W/m <sup>2</sup> °C. Calculate:                                                                                      |       |    |
|       | (i) The area of heat exchanger.                                                                                          |       |    |
|       | (ii) the rate of heat transfer                                                                                           |       |    |